
| 陈森涛 博士(华南理工大学) 职称/职务:副教授 Email: sentaochen@stu.edu.cn 英文主页:https://sentaochen.github.io/ 办公地址:东海岸D栋414室 |
|
个人简介:
陈森涛,副教授,硕士生导师,2020年博士毕业于华南理工大学软件学院。 同年,进入汕头大学计算机科学与技术系任教,入选汕头大学卓越人才计划:优秀人才。
研究兴趣为统计机器学习(Statistical Machine Learning)与迁移学习(Transfer Learning),包括领域自适应(Domain Adaptation), 领域泛化(Domain Generalization)等子问题的算法设计,以及算法在计算机视觉、自然语言处理、生物医学等领域上的应用。研究成果发表在 Pattern Recognition, Neural Networks, Information Sciences, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Image Processing, IEEE Transactions on Multimedia等机器学习或计算机视觉的国际主流学术期刊。研究成果的主要学术贡献:1. 提出联合分布对齐的核心思想,通过联合分布对齐,联合-积分布对齐,加权联合分布对齐等具体方式,来实现这个思想,从而在理论上、算法上,较好地解决迁移学习中联合分布不匹配的本质性问题。2. 提出统计距离估计的基础技术,通过随机样本直接估计出概率分布函数之间的距离。各研究工作的视频简介,请见Bilibili网址:https://space.bilibili.com/3546665973712929; 各算法的Python/PyTorch实现,请见GitHub仓库:https://github.com/sentaochen
研究领域:人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)算法研究
发表的学术论文:
(1)Lisheng Wen(研究生), Sentao Chen(通讯作者), Lin Zheng, and Ping Xuan, Open-Set Domain Adaptation by Joint Distribution Alignment and Unknown Risk Minimization, Pattern Recognition, 2026 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Joint-Distribution-Alignment-and-Unknown-Risk-Minimization
(2)Sentao Chen(第一作者兼通讯作者), Ping Xuan, and Lifang He, Open Set Domain Adaptation via Known Joint Distribution Matching and Unknown Classification Risk Reformulation, IEEE Transactions on Neural Networks and Learning Systems, 2026 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Known-Joint-Distribution-Matching-and-Unknown-Classification-Risk-Reformulation
(3)Sentao Chen(第一作者兼通讯作者), Ping Xuan, and Zhifeng Hao, Joint Distribution Weighted Alignment for Multi-Source Domain Adaptation via Kernel Relative Entropy Estimation, IEEE Transactions on Multimedia, 2025 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Joint-Distribution-Weighted-Alignment
(4)Sentao Chen(独立作者), Joint Weight Optimization for Partial Domain Adaptation via Kernel Statistical Distance Estimation, Neural Networks, 2024 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Joint-Weight-Optimation
(5)Lisheng Wen(研究生), Sentao Chen(通讯作者), Zijie Hong, Lin Zheng, Maximum Likelihood Weight Estimation for Partial Domain Adaptation, Information Sciences, 2024 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Maximum-Likelihood-Weight-Estimation
(6)Sentao Chen(独立作者), Multi-Source Domain Adaptation with Mixture of Joint Distributions, Pattern Recognition, 2024 (SCI: 一区;CCF: B类) 论文,Pytorch代码请见GitHub仓库:https://github.com/sentaochen/Mixture-of-Joint-Distributions
(7)Lisheng Wen(研究生), Sentao Chen(通讯作者), Mengying Xie, Cheng Liu, and Lin Zheng, Training Multi-Source Domain Adaptation Network by Mutual Information Estimation and Minimization, Neural Networks, 2023 (SCI: 一区;CCF: B类) 论文,PyTorch代码,视频讲解请见GitHub仓库:https://github.com/sentaochen/Mutual-Information-Estimation-and-Minimization
(8)Sentao Chen(独立作者), Decomposed Adversarial Domain Generalization, Knowledge-Based Systems, 2023 (SCI: 一区;CCF: C类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Decomposed-Adversarial-Domain-Generalization
(9)Sentao Chen(第一作者兼通讯作者), Lin Zheng, and Hanrui Wu, Riemannian Representation Learning for Multi-Source Domain Adaptation, Pattern Recognition, 2023 (SCI: 一区;CCF: B类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Riemannian-Representation-Learning
(10)Sentao Chen(第一作者兼通讯作者) and Zijie Hong, Domain Generalization by Distribution Estimation, International Journal of Machine Learning and Cybernetics,2023 (SCI: 三区;CCF: C类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Domain-Generalization-by-Distribution-Estimation
(11)Sentao Chen(第一作者兼通讯作者) and Liang Chen, Joint-Product Representation Learning for Domain Generalization in Classification and Regression, Neural Computing and Applications, 2023 (SCI: 三区;CCF: C类)
(12)Sentao Chen(第一作者兼通讯作者), Lei Wang, Zijie Hong, and Xiaowei Yang, Domain Generalization by Joint-Product Distribution Alignment, Pattern Recognition, 2023 (SCI: 一区;CCF: B类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Joint-Product-Distribution-Alignment (该论文获得2025年广东省计算机学会优秀论文二等奖)
(13)Sentao Chen(第一作者兼通讯作者), Zijie Hong, Mehrtash Harandi, and Xiaowei Yang, Domain Neural Adaptation, IEEE Transactions on Neural Networks and Learning Systems, 2022 (SCI: 一区;CCF: B类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Domain-Neural-Adaptation
(14)Sentao Chen(第一作者兼通讯作者), Hanrui Wu, and Cheng Liu, Domain Invariant and Agnostic Adaptation, Knowledge-Based Systems, 2021. (SCI: 一区;CCF: C类)
(15)Sentao Chen(第一作者兼通讯作者), Mehrtash Harandi, Xiaona Jin, and Xiaowei Yang*, Domain Adaptation by Joint Distribution Invariant Projections, IEEE Transactions on Image Processing, 2020 (SCI: 一区;CCF: A类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Joint-Distribution-Invariant-Projections
(16)Xiaona Jin(研究生), Xiaowei Yang, Bo Fu, and Sentao Chen(通讯作者), Joint Distribution Matching Embedding for Unsupervised Domain Adaptation, Neurocomputing, 2020 (SCI: 二区;CCF: C类) 论文,PyTorch代码请见GitHub仓库:https://github.com/sentaochen/Joint-Distribution-Matching-Embedding
(17)Sentao Chen(第一作者兼通讯作者), Mehrtash Harandi, Xiaona Jin, and Xiaowei Yang*, Semi-supervised Domain Adaptation via Asymmetric Joint Distribution Matching, IEEE Transactions on Neural Networks and Learning Systems, 2020 (SCI: 一区;CCF: B类)
(18)Sentao Chen(第一作者兼通讯作者), Le Han, Xiaolan Liu, Zongyao He, and Xiaowei Yang*, Subspace Distribution Adaptation Frameworks for Domain Adaptation, IEEE Transactions on Neural Networks and Learning Systems, 2020 (SCI: 一区;CCF: B类) 论文,Python代码请见GitHub仓库:https://github.com/sentaochen/Subspace-Distribution-Adaptation-Frameworks
(19)Sentao Chen(第一作者兼通讯作者) and Xiaowei Yang, Tailoring Density Ratio Weight for Covariate Shift Adaptation, Neurocomputing, 2019 (SCI: 二区;CCF: C类)
科研项目:
(1)领域自适应的联合分布适配算法研究,国家自然科学基金青年基金项目, 2022.01-2024.12,主持。
(2)领域泛化的领域对齐算法研究,广东省自然科学基金面上基金项目, 2023.01-2025.12,主持。
(3)非稳态环境下的监督学习算法研究,汕头大学卓越人才科研启动基金,主持。
指导学生
(1)温力胜,2021级硕士生,研究内容: 广义领域自适应算法研究(多源领域自适应、部分领域自适应、开集领域自适应),硕士论文请见GitHub仓库:https://github.com/sentaochen/Research-on-Generalized-Domain-Adaptation-Algorithms
(2)彭侠彬,2023级硕士生,研究内容: 开集领域自适应算法研究(开集领域自适应、多源开集领域自适应)
(3)张明科,2025级硕士生,研究内容: 面向标签集偏移的领域自适应算法研究(部分领域自适应、开集领域自适应、通用领域自适应)
硕士生毕业去向
温力胜,2024届硕士生,重庆大学 微电子与通信工程学院,攻读博士学位
教学课程:《统计学习方法》 《研究方法与创新》