
| 玄萍 博士(哈尔滨工业大学) 职称:教授 办公地址:东海岸D栋420室 邮箱:pxuan@stu.edu.cn 微信:happy112595123 欢迎硕士研究生(或有科研热情的本科生)加盟到我的课题组我们在汕头大学等你来~ 有意向加入课题组的同学请加我的微信或email到邮箱~ 研究方向:人工智能信息处理与分析、复杂网络构建与分析、机器学习和深度学习算法研究、 图像分析与处理、大数据处理与分析 |
|
个人简介
博士毕业于哈尔滨工业大学(泰晤士世界大学排名,第401到500之间)计算机科学技术学院,硕士生导师。2022年以前于黑龙江大学计算机学院任教授职位,2019年荣获黑龙江省级领军人才计算机应用技术学科的后备带头人称号。2022年下旬转职到汕头大学工学院计算机系任教授,并入选卓越人才计划。此外,作为TCBB、PCB、BIB等多个国际领域重要期刊的审稿人。
国外访学和工作经历
(1) 2015.02~2016.02,圣路易斯华盛顿大学(泰晤士世界大学排名第50位),美国,计算机科学和工程学院,访问学者
(2)2020.08~2021.08,千叶大学(泰晤士世界大学排名,第801到1000之间),日本,先进医学工程研究中心,客座教授
主持项目
先后主持并完成国家青年自然科学基金项目、黑龙江省自然科学基金面上项目、黑龙江省教育厅科学技术研究项目、中国博士后科学基金面上项目、哈尔滨市科技青年创新人才项目、黑龙江省高校基础科研青年科技创新团队项目等16项。目前正主持国家自然科学基金项目、汕头大学科研启动项目等,具有充足的研究经费。
发表论文
在国内外期刊和会议上共发表80余篇学术论文,其中包括中科院1区top期刊论文4篇,计算机科学技术领域top期刊论文4篇,中国计算机学会(CCF)推荐的B类国际期刊论文21篇等高水平论文(详细论文列表,请参见我的Google scholar)。以下仅列出近年发表的代表性论文:
2025年
(1) 第1作者. Neighborhood topology-aware knowledge graph learning and microbial preference inferring for drug-microbe association prediction. Journal of Chemical Information and Modeling, 2025. (中科院2区期刊,SCI影响因子: 5.7)
(2) 第1作者. Interactive multi-hypergraph inferring and channel-enhanced and attribute-enhanced learning for drug-related side effect prediction. Computers in Biology and Medicine, 2025. (中科院2区期刊,SCI影响因子: 7)
2024年
(3) 通讯作者. Evolving graph convolutional network with transformer for CT segmentation. Applied Soft Computing, 2024. (中科院1区top期刊,SCI影响因子: 7.2)
(4) 第1作者. Multi-view attribute learning and context relationship encoding enhanced segmentation of lung tumors from CT images. Computers in Biology and Medicine, 2024. (中科院2区期刊,SCI影响因子: 7)
2023年
(5) 第1作者. Multi-scale random walk driven adaptive graph neural network with dual-head neighboring node attention for CT segmentation. Applied Soft Computing, 2023. (中科院1区期刊,SCI影响因子: 6.725)
(6) 通讯作者. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT. Physics in Medicine & Biology, 2023. (中科院2区期刊,SCI影响因子: 3.609)
2022年
(7) 第1作者. Learning multi-scale heterogeneous representations and global topology for drug-target interaction prediction. IEEE Journal of Biomedical and Health Informatics, 2022. (中科院1区top期刊,SCI影响因子: 7.021)
(8) 第1作者. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(9) 第1作者. Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation. Computer Methods and Programs in Biomedicine, 2022. (中科院2区期刊,SCI影响因子: 5.428)
(10) 第1作者. Multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(11) 第1作者. Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation. Physics in Medicine & Biology, 2022. (中科院2区期刊,SCI影响因子: 3.609)
(12) 第1作者. Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(13) 通讯作者. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(14) 第1作者. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(15) 通讯作者. Inferring drug-target interactions based on random walk and convolutional neural network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 3.016)
(16) 第1作者. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction. Briefings in Bioinformatics, 23(3), bbac123, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(17) 第1作者. Semantic meta-path enhanced global and local topology learning for lncRNA-disease association prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022. (CCF推荐的B类国际期刊,SCI影响因子: 3.016)
(18) 第1作者. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
(19) 通讯作者. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. Briefings in Bioinformatics, 2022. (中国计算机学会推荐的B类国际期刊,SCI影响因子: 13.994)
2021年
(20) 第1作者.Dynamic graph convolutional autoencoder with node attribute-wise attention for kidney and tumor segmentation from CT volumes. Knowledge-based Systems, 2021.(中科院1区top期刊,SCI影响因子: 8.038)
(21) 第1作者. Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations. IEEE Journal of Biomedical and Health Informatics, 2021. (中科院1区top期刊,SCI影响因子: 7.021)
(22) 通讯作者. Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020. (ESI高被引论文,CCF推荐的B类国际期刊,SCI影响因子: 3.016)
(23) 通讯作者. Prediction of drug-related diseases through integrating pairwise attributes and neighbor topological structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021. (CCF推荐的B类国际期刊,SCI影响因子: 3.016)
(24) 第1作者. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction. Briefings in Bioinformatics, 2021. (CCF推荐的B类国际期刊,SCI影响因子: 13.994)
(25) 第1作者. Prediction of drug-target interactions based on network representation learning and ensemble learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021. (CCF推荐的B类国际期刊,SCI影响因子: 3.016)
科研获奖
(1)玄萍(第3完成人),吴文俊人工智能科学技术奖(被誉为中国智能科学技术最高奖),自然科学类,二等奖;
(2)玄萍(第1完成人),黑龙江省科学技术奖,三等奖;
(3)玄萍(第1完成人),黑龙江省高校科学技术奖,二等奖。
指导学生业绩
(1)先前指导的多数硕士研究生均荣获国家级或校级奖学金;
(2)部分研究生毕业分别去了百度、京东、小米、平安保险等国内知名IT公司和企业;
(3)部分研究生去了天津大学、南开大学、吉林大学等国内知名学府,继续攻读博士研究生
国内外合作和交流
我们课题组与美国圣路易斯华盛顿大学(泰晤士世界大学排名第50位)的Zhang教授、日本千叶大学(泰晤士世界大学排名,第801到1000之间)的Nakaguchi教授、澳大利亚La Trobe大学(泰晤士世界大学排名,第251到300之间)的Cui博士,具有长期的合作和交流。对于具有科研热情和工作勤奋的同学,可以优先推荐到国外读博;对于有意在国内读博的同学,则优先推荐到哈尔滨工业大学、吉林大学、天津大学等国内知名学府~