王海锋博士的主要研究兴趣是运用计算机技术,包括有限元方法(FEM)、格子玻尔兹曼方法(LBM)、浸入边界法(IBM)、机器学习(ML)等,研究心脑血管疾病及其治疗方案。博士期间专注于三维流固耦合计算模型的开发,并将其应用于动脉瘤血流动力学以及组织退化研究。博士后阶段致力于结合计算生物力学与动物实验研究心肌缺血及其治疗方案。目前已发表SCI论文10篇。担任多个期刊的审稿人,包括Computers in Biology and Medicine、Neurocomputing、Biomech Model Mechanobiol、Sci Rep、Journal of Biological Physics、Journal of Cardiothoracic Surgery、QIMS、Heliyon、Proc Inst Mech Eng C: J Mech Eng Sci,并受邀担任JoVE(Journal of Visualized Experiments)、Bioengineering等期刊的客座编辑。
研究兴趣
————————————————————————————————————————————
计算生物力学、心脑血管疾病及其治疗方案、机器学习等
教育背景
————————————————————————————————————————————
2017.06–2022.01 德国波鸿大学与马克斯·普朗克国际研究学院 (IMPRS) 联合培养,机械工程 (偏计算生物流体力学),工学博士
2014.10–2016.10 德国波鸿大学,计算工程(偏计算力学),理学硕士
2009.09–2013.07 西北农林科技大学,机械设计制造及其自动化,工学学士
工作经历
————————————————————————————————————————————2024.11–至今 讲师,工学院生物医学工程系,汕头大学
2022.06–2024.10 博士后,计算生物力学,美国密歇根州立大学
2022.01–2022.05 博士后,先进材料跨学科模拟中心 (ICAMS), 德国波鸿大学
2016.07–2017.05 科研助理,德国波鸿大学
科研项目
————————————————————————————————————————————汕头大学科研启动经费项目,2025.1-2027.12
科研论文
————————————————————————————————————————————1.Wang H, Choy JS, Kassab GS, Lee LC. Computer model coupling hemodynamics and oxygen transport in the coronary capillary network: Pulsatile vs. non-pulsatile analysis. Comput Methods Programs Biomed. 2025 Jan;258:108486. doi: 10.1016/j.cmpb.2024.108486.
2.Wang H, Fan L, Choy JS, Kassab GS, Lee LC. Mechanisms of coronary sinus reducer for treatment of myocardial ischemia: In silico study. J Appl Physiol. 2024;136(5):1157-1169. doi: 10.1152/japplphysiol.00910.2023.
3.Wang H, Fan L, Choy JS, Kassab GS, Lee LC. Simulation of coronary capillary transit time based on full vascular model of the heart. Comput Methods Programs Biomed. 2024;243:107908. doi: 10.1016/j.cmpb.2023.107908.
4.Wang H, Uhlmann K, Vedula V, Balzani D, Varnik F. Fluid-structure interaction simulation of tissue degradation and its effects on intra-aneurysm hemodynamics. Biomech Model Mechanobiol. 2022;21(2):671-683. doi: 10.1007/s10237-022-01556-7.
5.Wang H, Balzani D, Vedula V, Uhlmann K, Varnik F. On the potential self-amplification of aneurysms due to tissue degradation and blood flow revealed from FSI simulations. Front Physiol. 2021;12:785780. doi: 10.3389/fphys.2021.785780.
6.Wang H, Krüger T, Varnik F. Geometry and flow properties affect the phase shift between pressure and shear stress waves in blood vessels. Fluids. 2021;6(11):378. doi: 10.3390/fluids6110378.
7.Wang H, Krüger T, Varnik F. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study. PLoS ONE. 2020;15(1):e0227770. doi: 10.1371/journal.pone.0227770.
8.Fan L+, Wang H+, Kassab G, Lee L. Review of cardiac-coronary interaction and insights from mathematical modeling. WIREs Mech Dis. 2024;16(3):e1642. doi: 10.1002/wsbm.1642. +共同第一作者
9.Naghavi E, Wang H, Fan L, Choy J, Kassab G, Baek S, Lee L. Rapid Estimation of Left Ventricular Contractility with a Physics-Informed Neural Network Inverse Modeling Approach. Artif Intell Med. 2024;157(1):102995. doi: 10.1016/j.artmed.2024.102995.
10.Choy J, Hubbard T, Wang H, Awakeem Y, Khosravi P, Khadivi B, Navia J, Stone G, Lee L, Kassab G. Preconditioning with Selective Autoretroperfusion: In vivo and in silico evidence of washout hypothesis. Front Bioeng Biotechnol. 2024;12:1386713. doi: 10.3389/fbioe.2024.1386713.
教学工作
————————————————————————————————————————————Fundamentals of Biomedicine II - Metabolism & Regulation
Physics for Biomedical Engineering - Electricity
Research Methodology