报告人:叶芳琴博士 (汕头大学)
报告时间:2020年9月2日(周三)上午10:00-10:30
线上报告:腾讯会议 会议ID: 474 326 412
报告摘要:For $0<1 $, let $\lambda\subset \mathbb{d}$ be a separated sequence such that $\sum_{z_n\in \lambda}(1-|z_n|)^s \delta_{z_n}$ is an $s$-carleson measure. in this talk, we show that there exist certain analytic functions $a$ such that the second order complex differential equation $f''+af="0$" admits a nontrivial solution $f$ whose zero-sequence is $\lambda$, where the solution $f$ belongs to some mobius invariant function spaces. we strengthen a result in the literature before.