个人简介
汪飞,博士,2019年毕业于中山大学数据科学与计算机学院,获工学博士学位;2019年12月起在汕头大学工学院计算机系任教,硕士生导师。主要研究方向为生成式人工智能,具体包括三维重建、图像分割、流体模拟仿真等。发表代表性论文20余篇,包括ECCV,PG,ICME,Neurocomputing,Computer Graphics Forum(CGF)等会议和期刊,申请/授权专利7件,主持/参与了多项国家级和省部级项目。
研究领域
跨媒体智能:主要研究多媒体信息(文本、语音、图像、视频)智能处理与分析,人机交互,多模态信息融合等。
三维模型处理与生成:主要研究条件驱动的三维生成、虚拟数字人等。
代表性论著
[1] Fei Wang (汪飞). Sketch2Vox: Learning 3D Reconstruction from a Single Monocular Sketch[C]//European Conference on Computer Vision. 2024. https://doi.org/10.1007/978-3-031-72904-1_4. [计算机视觉顶会]
[2] Fei Wang (汪飞), Jianqiang Sheng, Zhineng Zhang, Baoquan Zhao, et al. Single Free-Hand Sketch Guided Free-Form Deformation For 3D Shape Generation[C]. 2024 IEEE International Conference on Multimedia and Expo (ICME). 2024. https://doi.org/10.1109/ICME57554.2024.10687931. [CCF-B 类会议]
[3] Fei Wang (汪飞), Kongzhang Tang, Hefeng Wu, Baoquan Zhao, et al. SketchBodyNet: A Sketch-Driven Multi-faceted Decoder Network for 3D Human Reconstruction. Pacific Graphics 2023. https://doi.org/10.2312/pg.20231266.[CCF-B 类会议]
[4] Feng Wang, Fei Wang (汪飞,通讯作者)*, Weiguo Zhang, Songhua Xu, Zhongping Lai*. A novel machine learning fingerprinting method using sparse representation for provenance detection in delta sediments, CATENA, 2023. https://doi.org/10.1016/j.catena.2023.107095. [SCI,中科院一区 TOP,IF:6.2]
[5] Fei Wang (汪飞) ,Songhua Xu, Dazhi Jiang, Xiaonan Luo. Particle Hydrodynamic Simulation of Thrombus Formation Using Velocity Decay Factor[J]. Computer Methods and Programs in Biomedicine, 2021. https://doi.org/10.1016/j.cmpb.2021.106173. [SCI,中科院二区 TOP 期刊,IF:7.0]
[6] Fei Wang (汪飞), Shujin Lin, Hanhui Li, Hefeng Wu, Xiaonan Luo, Ruomei Wang. Multi-column point-CNN for sketch segmentation[J]. Neurocomputing, 2020. https://doi.org/10.1016/j.neucom.2019.12.117. [SCI,中科院JCR二区Top,IF:5.7]
[7] Zhaoyun Chen, Jin Feng, Tengfei Li, Shuwen Zhang, Qiang Lian, Fei Wang (汪飞,通讯作者)*, Seasonal variability of the Pearl River Plume front based on deep learning, Continental Shelf Research, 2025. https://doi.org/10.1016/j.csr.2024.105395. [SCI,中科院三区,IF:2.1]
[8] Fei Wang (汪飞), Shujin Lin, Hefeng Wu, Hanhui Li, Ruomei Wang, Xiaonan Luo, et al. SPFusionNet: Sketch Segmentation Using Multi-modal Data Fusion. 2019 IEEE International Conference on Multimedia and Expo (ICME), 2019. https://doi.org/10.1109/ICME.2019.00285. [ CCF-B 类会议]
[9] Fei Wang (汪飞), Shujin Lin, Xiaonan Luo, et al. A Data-Driven Approach for Sketch-Based 3D Shape Retrieval via Similar Drawing-Style Recommendation[J]. Computer Graphics Forum, 2017. https://doi.org/10.1111/cgf.13281. [SCI,CCF-B 类期刊,IF:2.9]
[10] Fei Wang (汪飞), Yinxi Liang, Zhizhe Lin, Jinglin Zhou and Teng Zhou. SSA-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting[J]. Mathematics, 2024. https://doi.org/10.3390/math12121895.[SCI,2024年入选ESI高被引文章,相关证明见附件6]
[11] Jianqiang Sheng, Siwei Chen, Fei Wang (汪飞,通讯作者), Yongsheng Zhao, et al. 2024. PotC2Vox: A Point Cloud Data-Driven 3D Reconstruction Method for Single-View Images. 27th International Conference, ICPR, 2024. https://doi.org/10.1007/978-3-031-78186-5_23. [CCF-C 类会议]
[12] Fei Wang (汪飞), 李伟鸿, 杨彧, 姜大志, 赵宝全, 罗笑南. 动脉粥样硬化斑块生成的高效流固耦合不可压缩sph模拟方法,浙江大学学报(理学版),2023. https://doi.org/10.3785/j.issn.1008-9497.2023.06.006. [中文核心]
[13] Fei Wang (汪飞), Shujin Lin, Hefeng Wu, Xiaonan Luo, et al. Data-driven method for sketch-based 3D shape retrieval based on user similar draw-style recommendation[C]. ACM SIGGRAPH Asia Posters, 2016. https://doi.org/10.1145/3005274.3005314. [CCF-A ACM SIGGRAPH Asia Posters 会议短文]
[14] Fei Wang (汪飞), Shujin Lin, Ruomei Wang, Xiaonan Luo, et al. Improving incompressible SPH simulation efficiency by integrating density-invariant and divergence-free conditions. ACM SIGGRAPH Posters. https://doi.org/10.1145/3230744.3230757. [CCF-A ACM SIGGRAPH Posters 会议短文]
[15] Fei Wang (汪飞), Shujin Lin,Xiaonan Luo, Baoquan Zhao, Ruomei Wang. Query-by-Sketch Image Retrieval Using Homogeneous Painting Style Characterization[J]. Journal of electronic imaging, 2019. https://doi.org/10.1117/1.JEI.28.2.023037. [SCI,中科院四区 TOP,IF:1.0]
[16] Teng Zhou, Haowen Dou, Jie Tan, Youyi Song, Fei Wang (汪飞), Jiaqi Wang. Small dataset solves big problem: an outlier-insensitive binary classifier for inhibitory potency prediction. Knowledge-Based Systems, 2022. https://doi.org/10.1016/j.knosys.2022.109242. [SCI,中科院一区 TOP,IF:7.2]
[17] Haowen Dou, Jie Tan, Huiling Wei, Fei Wang (汪飞), Jinzhu Yang, Jiaqi Wang, Teng Zhou: Transfer inhibitory potency prediction to binary classification: A model only needs a small training set. Computer Methods and Programs in Biomedicine, 2022. https://doi.org/10.1016/j.cmpb.2022.106633. [SCI,中科院二区 TOP 期刊,IF:7.0]
[18] 陈旭游, 王若梅, 林淑金, 汪飞, 罗笑南. 基于Gillespie 方法的血栓生成模拟方法[J]. 计算机辅助设计与图形学学报, 2019. https://doi.org/10.3724/SP.J.1089.2019.17570. [中文核心]
科研项目
1.广东省自然科学基金项目,保密度-无散度耦合流体模拟方法及其在血栓生理特性问题中的应用, 2022A1515011978。
2.广东省自然科学基金项目,基于手绘草图的可视媒体资源交互和合成的方法研究, 2021A1515012302。
3.广东省普通高校重点领域专项,基于SMPL和草图语义描述的三维人体重建方法研究,2022ZDZX1007。
4.广东省科技创新战略专项,基于手绘的三维几何建模和编辑研究,STKJ202209003。
5. 国家自然科学基金青年项目,纠缠破坏信道与量子测量的代数结构与几何特,11201329。
6广东省科技创新战略专项,面向产品设计的草图式三维造型技术研究,STKJ2023069
7.广东省普通高校青年创新人才项目,基于光滑流体动力学的血液生化反应的模拟方法研究, 2019GKQNCX120。
8.广东省自然科学基金项目,自适应多任务学习算法研究及其在癌症数据分析中的应用, 2022A1515010434,。
9.广东省自然科学基金项目,基于动力学特征城市功能分区与路网融合的交通流预测研究, 2022A1515011590。
10.汕头大学科研启动经费项目,深度神经网络的三维模型生成与优化方法研究,NTF20011。
11.国家自然科学基金,面上项目,基于手绘个性化偏差矫正和风格识别的图形图像检索研究, 61572531。